President & CEOOfficers of the CorporationBoard of TrusteesFoundation BoardLeadership CouncilAbout Joslin ResearchAdvocacy & Gov't AffairsHistory
Newly DiagnosedManaging DiabetesChildhood DiabetesNutritionExerciseOnline Diabetes ClassesDiscussion BoardsJoslin Clinical ResearchInfo for Healthcare ProfessionalsJoslin Clinical Guidelines
Make an AppointmentAdult ClinicYoung Adult Transition CarePediatricsEye CareWeight Management ProgramsDO ITMental Health & CounselingReferring PhysiciansBillingAfrican American ProgramsAsian ClinicLatino Diabetes InitiativeAbout Joslin ResearchVolunteer for Clinical Research StudiesInfo for Healthcare ProfessionalsClinical Guidelines
Directory of Joslin InvestigatorsDiabetes Research Center Alumni ConnectionVolunteer for Clinical Research Studies
Media RelationsNews ReleasesInside Joslin
Affiliated CentersPharma & DeviceCorporate EducationPublicationsProfessional EducationInternationalCause MarketingHealthcare ProfessionalsCommercialization and VenturesJoslin Institute for Technology Translation (JITT)
Give NowHigh Hopes FundWays to GivePlanned GivingEventsGet InvolvedCorporate & Foundation SupportOur DonorsDevelopment Team

Amy J. Wagers, Ph.D.

Research Summary

Stem Cells in Adult Tissues

The broad interest of the Wagers Lab is to identify and analyze tissue-specific stem cell populations in adult animals. This work focuses on understanding the factors controlling the migration and expansion of bone marrow-derived and blood-forming (hematopoietic) stem cells in mice, as well as developing methods for the isolation and manipulation of distinct stem and progenitor cell populations from adult mouse skeletal muscle.

Biology and function of hematopoietic stem cells. Every year, tens of thousands of patients undergo bone marrow or peripheral blood progenitor cell transplantation for the treatment of diverse diseases (including leukemia, lymphoma, immunodeficiency and others). The success of these transplants depends critically on the surprising ability of intravenously infused hematopoietic stem cells, which normally reside predominantly in the bone marrow, to accurately and efficiently migrate from the blood to the marrow of transplant recipients, whose own blood system has been compromised by radiation and/or chemotherapy.  Once there, these stem cells are further required to expand and differentiate to repopulate all of mature cells in the patient’s blood. Importantly, failure or inefficiency in any one of these stages of transplantation can cause failture of the stem cell graft, and so, understanding the molecular and cellular processes that permit these stem cell functions is essential for improving transplant outcomes.

To this end, we are pursuing both genetic and cell biological approaches to defining genes and gene products that control stem cell migration, expansion, differentiation and survival, in order to devise better engraftment strategies that limit transplant-associated complications. Related to these efforts, in collaboration with an NIH-funded consortium of investigators interested in applying stem cell transplant-based therapeutics to the treatment of sickle cell disease, we also are developing new, robust approaches for precise and directed gene-modification of stem cells, to support the effective use of gene-corrected stem cells for the treatment of single gene disorders.

Adult skeletal muscle precursor cells.

Currently, blood-forming stem cells are the only adult stem cell population that has been purified and used for the treatment of human disease. To develop equally robust cell therapies for treating non-blood-cell-related disease, cells with equivalent regenerative function for non-blood tissues must be identified. To this end, we have developed cell surface marker based approaches to directly identify and isolate lineage-specific precursor cells in adult skeletal muscle. These precursors include cells with robust muscle-forming activity, which when transplanted into animals with injured or defective skeletal musculature, are able to reconstitute both muscle fibers and regenerative satellite cells, improving muscle function and providing enduring muscle regenerative function.

Our onging studies are aimed at further defining cell lineage relationships in the differentiation of muscle stem and progenitor cells, enhancing the efficiency with with these cells can be transplanted and regenerate skeletal muscle, as well as identifying signaling pathways and gene expression programs important for maintaining the regenerative potential of these muscle-resident stem cells throughout life and preventing their malignant transformation in the context of myogenic sarcomas.

Biography

Dr. Wagers is Investigator in the Section on Developmental and Stem Cell Biology as well as Professor of Stem Cell and Regenerative Biology at Harvard University. She received her doctoral degree in Immunology and Microbial Pathogenesis from Northwestern University, and completed postdoctoral training at Stanford University School of Medicine. She is a recipient of the Burroughs Wellcome Fund Career Award in Biomedical Sciences. HHMI Early Career Scientist Award, and Presidential Early Career Award for Scientists and Engineers.

Page last updated: September 19, 2014