Consensus and Controversy in Diabetes and Dyslipidemia

Om P. Ganda MD
Director, Lipid Clinic
Joslin diabetes Center
Boston, MA, USA

CVD Outcomes in DM vs non-DM

102 Prospective studies, 698, 782 people, 8.5 million person-yr of follow-up

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>Male (%)</th>
<th>Female (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary heart disease</td>
<td>70 (5%)</td>
<td>23 (2%)</td>
</tr>
<tr>
<td>Other heart disease</td>
<td>113 (9%)</td>
<td>56 (4%)</td>
</tr>
<tr>
<td>Stroke subtypes</td>
<td>47 (4%)</td>
<td>22 (2%)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>12 (1%)</td>
<td>6 (0.5%)</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>1 (0.1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Undifferentiated stroke</td>
<td>15 (1%)</td>
<td>7 (0.6%)</td>
</tr>
<tr>
<td>Other vascular deaths</td>
<td>2 (0.2%)</td>
<td>1 (0.1%)</td>
</tr>
</tbody>
</table>

Supremacy of Statins in CVD Risk Reduction
HPS: Major Vascular Events by LDL Cholesterol

<table>
<thead>
<tr>
<th>Lipid Levels at Entry</th>
<th>Simvastatin (14,269)</th>
<th>Placebo (16,287)</th>
<th>STATIN Better</th>
<th>PLACEMBO Better</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDL cholesterol (mg/dl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 100</td>
<td>282 (16.4%)</td>
<td>358 (21.0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 100 < 130</td>
<td>668 (18.9%)</td>
<td>871 (24.7%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 130</td>
<td>1083 (21.6%)</td>
<td>1356 (26.9%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL PATIENTS</td>
<td>2033 (19.8%)</td>
<td>2585 (25.2%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LDL-C : Less is More

CTT: Meta-analysis of 26 Statin Trials

Copyright © 2013 by Joslin Diabetes Center, Inc. All rights reserved. These materials may be used for personal use only. Any distribution or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Joslin Diabetes Center is prohibited.
Is there a point of No-Return?

SHARP: Major Atherosclerotic Events by renal status at randomization

<table>
<thead>
<tr>
<th>Group</th>
<th>Eey/ine (n=3907)</th>
<th>Placebo (n=4020)</th>
<th>Risk ratio & 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-dialysis (n=8247)</td>
<td>296 (9.5%)</td>
<td>379 (11.9%)</td>
<td></td>
</tr>
<tr>
<td>Dialysis (n=3023)</td>
<td>230 (15.0%)</td>
<td>246 (16.5%)</td>
<td></td>
</tr>
<tr>
<td>Major atherosclerotic event</td>
<td>529 (11.5%)</td>
<td>829 (13.4%)</td>
<td>16.9% Δ 5.4 reduction (p=0.0022)</td>
</tr>
</tbody>
</table>

No significant heterogeneity between non-dialysis and dialysis patients (p=0.25)

23% had diabetes: same outcome

~ 10-15% of patients have significant myalgia with statins, most with dose escalation

Underlying Mechanism(s)?
Simvastatin and Myopathy

Simvastatin allocation (per 1000 person-years)

<table>
<thead>
<tr>
<th>Years of follow-up</th>
<th>80 mg (6031)</th>
<th>20 mg (8033)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>25 (4.2)</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>2-7</td>
<td>28 (0.8)</td>
<td>2 (0.1)</td>
</tr>
<tr>
<td>Total</td>
<td>53</td>
<td>3</td>
</tr>
</tbody>
</table>

Myopathy: New, unexplained muscle pain or weakness plus CK>15xULN (vs 0 developed rhabdomyolysis)

AHA, 2008

SLCO1B1 Variants and Statin-Induced Myopathy — A Genome-Wide Study

Myopathy Associated with 80 mg of Simvastatin Daily, According to SLCO1B1 rs4149056 Genotype

Auditon Response Question 1

Recent meta-analysis of clinical trials have shown an increased risk of diabetes. How high is the approximate risk?

- A. 5%
- B. 10%
- C. 15%
- D. 20%
Statins and Incident diabetes

Significant correlation with age (p=0.02), not with BMI or LDL reduction

Sattar, N et al Lancet 2010; 375: 735-742

To put it in Perspective:

- Incidence of Diabetes with statin therapy:
 ~1 new case per 200 persons treated over 5 years

- Incidence of Major Cardiovascular Event
 ~ 5 new events prevented per 200 persons treated over 5 years

LDL-C-Lowering Drugs

- Drugs reducing cholesterol synthesis
 - HMG CoA reductase inhibitors: statins (preferred)
 - LDL-C reduction up to 60%
 - Latest addition: pitavastatin

- Drugs reducing cholesterol absorption
 - Bile acid sequestrants (BAS)
 - Colesevelam, cholestyramine, colestipol
 - Bind to bile acids > increase excretion of cholesterol
 - LDL-C reduction 15-25%; TG may rise
 - Cholesterol transport inhibitor
 - Ezetimibe; binds to intestinal cholesterol transporter
 - LDL-C reduction ~15-20%
Potential LDL Lowering Agents

- Anti-sense apoB synthesis inhibitor: Mipomersen
 ~ 30% reduction in LDL-C in patients with FH
 (Baseline LDL-C: >300 mg/dl)
- MTP-1 Inhibitors: Lomitapide
 : Inhibits assembly of all Apo-B lipoproteins
- PCSK-9 Inhibitors: Several in trials
 : Prevents degradation of LDL receptors

PCSK9: A Novel Target for LDL

Effect of PCSK9 antibody (AMG-145), add-on to statin +/- Eze on LDL-C

Baseline LDL-C ~ 125 mg/dl

Copyright © 2013 by Joslin Diabetes Center, Inc. All rights reserved. These materials may be used for personal use only. Any distribution or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Joslin Diabetes Center is prohibited.
How to deal with the Residual Risk of CVD after achieving LDL-C Goal?

Patients with Diabetes Have High Residual CVD Risk After Statin Treatment

<table>
<thead>
<tr>
<th>Event Rate (No Diabetes)</th>
<th>Event Rate (Diabetes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On Statin</td>
<td>On Placebo</td>
</tr>
<tr>
<td>HPS* (CHD patients)</td>
<td>19.8%</td>
</tr>
<tr>
<td>CARE†</td>
<td>19.4%</td>
</tr>
<tr>
<td>LIPID‡</td>
<td>11.7%</td>
</tr>
<tr>
<td>PROSPER§</td>
<td>13.1%</td>
</tr>
<tr>
<td>ASCOT-LLA¶</td>
<td>4.9%</td>
</tr>
<tr>
<td>TNT</td>
<td></td>
</tr>
</tbody>
</table>

* CHD death, nonfatal MI, stroke, revascularizations
† CHD death, nonfatal MI, CABG, PTCA
‡ CHD death and nonfatal MI
§ CHD death, nonfatal MI, stroke
¶ CHD death, nonfatal MI, resuscitated cardiac arrest, stroke (80 mg vs 10 mg atorvastatin)

Mechanisms Relating Insulin Resistance and Dyslipidemia

Copyright © 2013 by Joslin Diabetes Center, Inc. All rights reserved. These materials may be used for personal use only. Any distribution or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Joslin Diabetes Center is prohibited.
ATPIII: Recommendations for Non-HDL-C

If Triglyceride 200 -499 mg/dL:

Non-HDL-C (total C minus HDL) is a secondary target of therapy with a goal of 30 mg/dL higher than the LDL goal.

ADA/ACC Consensus Statement

"...In patients with Cardio-metabolic Risk, we recommend guiding therapy with apo-B measurements, and treatment to apo-B goals, in addition to LDL-C and non-HDL-C assessment.*

<table>
<thead>
<tr>
<th>TREATMENT GOALS</th>
<th>LDL-C (mg/dL)</th>
<th>Non-HDL-C (mg/dL)</th>
<th>ApoB (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest-risk patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Including those with 1) Known CVD or 2) Diabetes plus one or more additional CVD risk factor*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 70</td>
<td>< 100</td>
<td>< 80</td>
<td></td>
</tr>
<tr>
<td>High-risk patients</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Including those with 1) No diabetes or known clinical CVD but 2 or more additional major CVD risk factors or 2) Diabetes but no other CVD risk factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 100</td>
<td>< 130</td>
<td>< 90</td>
<td></td>
</tr>
</tbody>
</table>

*Smoking, HBP, f/h premature CHD

Discordance between non-HDL-C, and Apo-B

<table>
<thead>
<tr>
<th>Non-HDL-C</th>
<th>Apo-B < 90 mg/dl</th>
<th>Apo-B ≥ 90 mg/dl</th>
<th>Discordance</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 130 mg/dl</td>
<td>734</td>
<td>607</td>
<td>127</td>
</tr>
<tr>
<td>≥ 130 mg/dl</td>
<td>696</td>
<td>95</td>
<td>601</td>
</tr>
</tbody>
</table>

Copyright © 2013 by Joslin Diabetes Center, Inc. All rights reserved. These materials may be used for personal use only. Any distribution or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Joslin Diabetes Center is prohibited.
Effect of Lowering Triglycerides (with Fibrates) in Reducing Residual Risk?

NHANES Circ 2011; 123: 2292-2333

TG > 200 mg/dl: ~35% Prevalence in Adults with Diabetes

NHANES, 1999-2002

Recommendation...Up to 50% reduction in TG levels by intensive lifestyle measures, including reduction in sucrose and fructose.

n=5518
Mean f/u: 4.7 yr
Adherence ~80%
No Rhabdo.
CR > 7.5: 0.8 vs 0.3%
ALT > 3x: 1.9 vs 1.5%

ACCORD: Lipid Results

Copyright © 2013 by Joslin Diabetes Center, Inc. All rights reserved. These materials may be used for personal use only. Any distribution or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Joslin Diabetes Center is prohibited.
Algorithm for Dyslipidemia Assessment and Management

Order lipid profile:

LDL-C > 100 mg/dL
- Lifestyle = Statin Rx
- Goal: LDL-C < 100 mg/dL.
- CVD-yes
- CVD-no

LDL-C > 70 mg/dL, TG > 200 mg/dL/2
- Measure Apo B
- Non-HDL-C ≥ 100 mg/dL or Apo B > 80 mg/dL.
- Intensify LDL Rx; may need fibrate or niacin

LDL-C < 70 mg/dL, TG > 500 mg/dL
- Treatment: Lifestyle + Statin Rx
- Goal: LDL-C < 100 mg/dL.
- Treat TG ≥ 500 mg/dL.
- Fibrates and/or fish oil if > 1000 mg/dL

LDL-C < 70 mg/dL, TG < 500 mg/dL
- CVD-yes
- CVD-no

Lifestyle + Statin Rx
- LDL-C < 100 mg/dL

* 130 mg/dL if fasting.
Origin and Metabolic Fate of HDL

Putative Mechanisms Mediating the Anti-Atherogenic Effects of HDL-C

- Reverse cholesterol transport
- Antioxidant effects
- Inhibition of adhesion molecule expression
- Inhibition of platelet activation
- Prostacyclin stabilization
- Promotion of NO production
- Association with increased adiponectin

Audience Response Question 2

Is HDL-C an important determinant of CVD events in patients with LDL-C < 70 mg/dL

A. Yes
B. No
C. Maybe
Lipid Changes and Outcomes

<table>
<thead>
<tr>
<th>Placebo + Statin</th>
<th>Niacin + Statin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>30 months</td>
</tr>
<tr>
<td>HDL-C (mg/dL)</td>
<td>50</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>152</td>
</tr>
<tr>
<td>Non-HDL-C (mg/dL)</td>
<td>110.3 ± 26.0</td>
</tr>
</tbody>
</table>

Primary and composite end point: Death from CHD, non-fatal MI, ischemic stroke, hospitalization for ACS, or symptom-driven coronary or cerebrovascular recascularization

- Placebo + Statin: 16.2%
- Niacin + Statin: 16.4%

Logrank P = 0.29
Risk ratio 0.96 (95% CI 0.90 – 1.03)

n=25,673

Effect of ERN/LRPT on MAJOR VASCULAR EVENTS

Risk ratio 0.96 (95% CI 0.90 – 1.03)
Logrank P=0.29

Occurrence of serious adverse events in HPS2-THRIVE

Note: RR = relative risk
Source: Dr. Armage, ACC, 2013

Copyright © 2013 by Joslin Diabetes Center, Inc. All rights reserved. These materials may be used for personal use only. Any distribution or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Joslin Diabetes Center is prohibited.
Potential HDL Therapies Saga

- Cholesterol ester transfer protein (CETP) inhibitors (Torcetrapib, Dalcetrapib, Anacetrapib)
- APO A-1 mimetic agents
- PPAR-\(\gamma\)/\(\alpha\) - dual agonists (Muraglitazar, Tesaglitazar, Aleglitazar)
- MK-0524A: ER Niacin + DP-1 receptor antagonist (Laropiprant) - Tredaptive

Inflammatory Pathways underlying Plaque Rupture and Thrombosis

Libby, P. *NEJM* 2013; 368: 2004-2013

- LP-PLA-2 Inhibitor: Darapladib (SOLID-TIMI-52)
- IL-1-\(\beta\) antibody: Canakinumab Trial (CANTOS)
- Low dose Methotrexate (CIRT)
Thank You!