Evolving insulin therapy: Insulin replacement methods and the impact on cardiometabolic risk

Harvard/Joslin Primary Care Congress for Cardiometabolic Health 2013

Richard S. Beaser, MD
Medical Executive Director of Professional Education
Joslin Diabetes Center
Associate Clinical Professor of Medicine
Harvard Medical School
Physiologic Insulin Secretion: 24-Hour Profile

Insulin (µU/mL)

- Basal insulin
- Breakfast
- Lunch
- Dinner

Glucose (mg/dL)

- Basal glucose

Time of Day

7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 AM PM
Aggressive Control of Diabetes: Glycemic Goals of Treatment

<table>
<thead>
<tr>
<th>AMERICAN DIABETES ASSOCIATION (ADA)</th>
<th>GOAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C (%)</td>
<td>< 7</td>
</tr>
<tr>
<td>Preprandial plasma glucose (mg/dL)</td>
<td>70–130</td>
</tr>
<tr>
<td>Peak postprandial plasma glucose (mg/dL)</td>
<td>< 180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS (AACE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1C (%)</td>
</tr>
<tr>
<td>Preprandial plasma glucose (mg/dL)</td>
</tr>
<tr>
<td>2-hour postprandial glucose</td>
</tr>
</tbody>
</table>

A1C is “gold standard” measure of diabetes control over the previous 2–3 months

Handelsman Y et al. AACE Medical Guidelines for Clinical Practice for Developing a Diabetes Mellitus Comprehensive Care Plan. *Endo Prac* 17 (Suppl 2) Mar/Apr 2011.
Value of Insulin Therapy in Type 2 DM

- Overcoming glucose toxicity
- Using insulin treatment early in the natural history to optimize and/or replace first-phase insulin release
- To control fasting glucose and thus improve day-long glycemic control
- Need for insulin therapy later in the natural history to replicate both basal and prandial insulin patterns
- Individualize goals to maintain safety
Natural History of Type 2 Diabetes

IGT=impaired glucose tolerance **IFG**=Impaired Fasting Glucose

Adapted from International Diabetes Center (Minneapolis, Minn).

Plasma Glucose

120 (mg/dL)

Relative β-Cell Function

100 (%)

Years of Diabetes

*IGT=impaired glucose tolerance **IFG=Impaired Fasting Glucose
DECODE Trial: Relative Risk of Death, Shown by Blood Glucose Level

*Death due to all causes, adjusted for age, sex, study center.
Relative Contribution of FPG and PPG to Overall Hyperglycemia Depending on A1C Quintiles

Clinical Inertia: “Failure to advance therapy when required”

Percentage of Subjects Advancing when A1C > 8%

At insulin initiation, the average patient had:
- 5 years with A1C > 8%
- 10 years with A1C > 7%

ACCORD & Advance

- ACCORD: More unexpected deaths in the intensive glycemic treatment group, unrelated hypoglycemia, specific drugs Rx.
- Advance: Intensive glucose control significantly reduces risk of DM vascular complications. VADT: similar findings
- Implications: No change in guidelines. (Early aggressive control likely still a benefit)
- However, individualize treatment goals, and avoid “tight” control where it might be dangerous (CAD, elderly)

Early Insulin Treatment in Type 2 Diabetes: PROS

- Effective control with minimal weight gain and hypoglycemia
- Rapidly overcomes glucose toxicity to establish glycemic control
- Could be transitioned back to antidiabetes medication therapy if possible
- Advancement of therapy to maintain euglycemia would parallel decline in β-cell function

Meneghini LF. *Diabetes Care.* 2009;32:S266-S269.
Early Insulin Treatment in Type 2 Diabetes: CONS

- Data do not support the hypothesis that early insulin treatment reduces cardiovascular risk
- Associated with adverse effects, such as hypoglycemia, weight gain, and possibly increased cancer risk
- Nevertheless, treat to target, and insulin may be needed to do so

Comparison of Newly Diagnosed Subjects Treated with CSII, MDI, or Antidiabetes Medication for 2 Weeks after Achievement of Normoglycemia

- Comparison of CSII, MDI, or oral treatment (SU +/- or Met)
- Treatments used to rapidly establish glycemic control (F: 110, 2-h pp 144 mg/dL) within 8 days; greater percentage in the insulin groups achieved targeted control
- Treatment withdrawn after 8 days of normoglycemia, then HOMA measure of first-phase insulin release at that time and at 1 year
- By 1 year, remission rates higher in insulin groups
- Better retention of first-phase insulin release in insulin-treated groups

Comparison of Newly Diagnosed Subjects Treated with CSII, MDI, or Antidiabetes Medication for 2 Weeks after Achievement of Normoglycemia

<table>
<thead>
<tr>
<th></th>
<th>CSII</th>
<th>MDI</th>
<th>SU + Metformin</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>133</td>
<td>118</td>
<td>101</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>50</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Baseline A1C (%)</td>
<td>9.8</td>
<td>9.7</td>
<td>9.5</td>
</tr>
<tr>
<td>% Achieving euglycemia</td>
<td>97</td>
<td>95</td>
<td>83</td>
</tr>
<tr>
<td>Time to euglycemia (days)</td>
<td>4</td>
<td>5.6</td>
<td>9.3</td>
</tr>
<tr>
<td>Daily drug dose</td>
<td>0.68 units/kg (mean)</td>
<td>0.74 units/kg (mean)</td>
<td>Glicazide 160 mg + metformin 1,500 mg</td>
</tr>
<tr>
<td>Δ in AIR</td>
<td>951</td>
<td>800</td>
<td>831†</td>
</tr>
<tr>
<td>AIR (median) in remission groups at 1 year</td>
<td>809</td>
<td>729</td>
<td>335†</td>
</tr>
</tbody>
</table>

*AIR = Acute insulin response (pmol • 1⁻² • min⁻¹)

†P<0.05 compared with CSII

Incremental or Decremental Values for Fasting Insulin vs Baseline at Year 1 and 2

Insulin stopped for 72 h at 1 and 2 years for testing at 48 and 72 h

†P = 0.02 Glibenclamide (glyburide) vs insulin

Diabetes Dx:
• Within 2 mos
• Age 21–70 yrs

Rx: 70/30 Premix Insulin BID + Metformin

3 months

Metformin, Glyburide, + Pioglitazone

3 years

Continue Insulin + Metformin

Comparisons of Insulin-Based vs Triple Oral Therapy: A1C, Weight, Compliance – 36 Months

A1C

Weight

Compliance

Comparisons of Insulin-Based vs Triple Oral Therapy: Hypoglycemia – 36 Months

- **Mild hypoglycemic events ($P=0.18$)**
 - Insulin group: 0.51 events / person-month
 - Triple oral group: 0.68 events / person-month

- **Severe hypoglycemic events ($P=0.53$)**
 - Insulin group: 0.04 events / person-year
 - Triple oral group: 0.09 events / person-year

Comparisons of Insulin-Based vs Triple Oral Therapy: Compliance, QOL – 36 months

- **Compliance**
 - Insulin group: 93%
 - Triple oral group: 90%

- **Quality of life**
 - No between-group differences for any of the 12 QOL domains evaluated
 - Both groups showed improvements with respect to social worries
 - All other domains remained unchanged

- Subjects randomized to the insulin group reported satisfaction with that treatment and willingness to continue at the 18-month period
ORIGIN Trial:

- A six-year randomized clinical trial to assess impact of insulin glargine Rx versus standard care on CV outcomes.
- Over 12,500 participants worldwide with pre-diabetes or early type 2 diabetes mellitus and high CV risk
- 6,264 participants randomized to receive insulin glargine titrated to achieve fasting normoglycemia.
- The co-primary endpoints were the composite of CV death, or non-fatal MI, or nonfatal stroke; and the composite of CV death, or non-fatal MI, or non-fatal stroke, or revascularization procedure, or hospitalization for heart failure.
ORIGIN Trial: Key Findings

The study demonstrated:

- Achieving fasting normoglycemia did not affect CV outcomes in subjects with early dysglycemia
 - First co-primary endpoint: $p = 0.63$, NS
 - Second co-primary endpoint: $p = 0.27$, NS

- Glargine achieved targeted long-term glycemic control (median FPG = 5.2 mmol/L and A1C 6.2%), over 6.2 years

- No association between glargine use and increased risk of any cancer ($p = 0.97$, NS).
 - All cancers combined
 - Any organ-specific type of cancer
Demonstrated a reduction in the progression to diabetes for people without diabetes at baseline (based on OGTT off insulin):

- Glargine delayed progression from pre-diabetes (IFG or IGT) to confirmed type 2 diabetes mellitus by 28% (p = 0.006).
- Reduction was 31% for confirmed plus uncertain diagnosis group
- Reduction in progression occurred despite weight gain (diabetes risk factor)
- Actual effect on β-cell function is uncertain
ORIGIN Trial: Adverse Events

- **Hypoglycemia:**
 - Severe, events per 100 patient-yr ($p<0.001$):
 - Glargine: 1 episode
 - Standard care: 0.31 episode
 - Overall hypoglycemia, events per 100 person-yr ($p<0.001$):
 - Glargine: 16.7
 - Standard Care: 5.16

- **Weight:**
 - Glargine: Increased by a median of 1.6 kg
 - Standard Care: Fell by 0.5 kg
ORIGIN Trial: Key Messages

- No increased or decreased risk of CVD with early use of glargine (basal) insulin
- No increased risk of cancer with use of glargine
- Insulin can slightly increase the risk of hypoglycemia and weight gain
- Early use of insulin *may* have a beneficial impact on short-term loss of β-cell function. Long term impact is unknown; further study is needed
HEART2D:

![Graph showing fraction of patients not experiencing a combined primary outcome](image)

<table>
<thead>
<tr>
<th>Days</th>
<th>Basal (n=558)</th>
<th>Prandial (n=557)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>200</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>400</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>600</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>800</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>1,000</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>1,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Days</th>
<th>Prandial</th>
<th>Basal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=557</td>
<td>n=558</td>
</tr>
<tr>
<td>0</td>
<td>453</td>
<td>464</td>
</tr>
<tr>
<td>200</td>
<td>420</td>
<td>430</td>
</tr>
<tr>
<td>400</td>
<td>407</td>
<td>410</td>
</tr>
<tr>
<td>600</td>
<td>393</td>
<td>399</td>
</tr>
<tr>
<td>800</td>
<td>392</td>
<td>386</td>
</tr>
<tr>
<td>1,000</td>
<td>388</td>
<td>382</td>
</tr>
<tr>
<td>1,200</td>
<td>384</td>
<td>377</td>
</tr>
</tbody>
</table>

HEART2D:

Percentage of HEART2D patients aged >65.7 years not experiencing a first CV event (CV death, nonfatal MI, nonfatal stroke, coronary revascularization, or hospitalization for acute coronary syndrome) vs. days in the trial by insulin strategy.

Raz I et al. Diabetes Care 2011;34:1511-1513
Meal-induced increases in Inflammatory Markers are attenuated by prandial + basal insulin in patients with Type 2 diabetes.

Black Bars with dotted line trend:
Insulin lispro mix + Metformin

White Bars with solid line trend:
Insulin glargine + Metformin
Meal-induced increases in Inflammatory Markers are attenuated by prandial + basal insulin in patients with Type 2 diabetes.

Black Bars with dotted line trend:
Insulin lispro mix + Metformin

White Bars with solid line trend:
Insulin glargine + Metformin
Exenatide Plus Glargine: Change in Glucose Levels Over 30 weeks

*p< 0.001 for between-group dif.
†p< 0.010 for between-group dif.
Exenatide Pus Glargine: Change in Weight Over 30 Weeks

Liraglutide Plus Metformin, With and Without Detemir: Self-monitoring Glucose Profiles

Insulin is highly effective but can be perceived as being a challenge for both patients and physicians.

Basal-bolus insulin regimens require more injections but provide better insulin coverage and better glycemic control.

Insulin regimens and insulin dosing must be adjusted for each individual patient.
Key Messages: Monitoring

- The use of glycemic monitoring patterns is key to making insulin dose adjustments.
- Monitoring schedules should be individualized for each patient to gather the specific information you need to manage that person’s treatment program.
Glucose Monitoring for Regimen Adjustment

- Patients must know what they will do with the results: Action, call, other!!
- Glucose checking ≠ glucose monitoring
- Record-keeping is crucial:
 - Date/time
 - Glucose values
 - Insulin dose
 - Food and/or carbohydrate intake
 - Activity and other factors impacting glycemic patterns
Physiologic Insulin Secretion

Daytime Meals

Breakfast Lunch Supper Snack

Insulin
Key Parameters Reflecting Glycemic Control

- A1C
- Preprandial glucose levels
- Postprandial glucose levels
Action Profiles of Injectable Insulins

- Regular: 6–8 Hours
- NPH: 12–20 Hours
- Basal Insulin: Glargine, Detemir

Action Profiles:
- Aspart, Glulisine, Lispro: 4–6 Hours
- Regular: 6–8 Hours
- NPH: 12–20 Hours
- Basal Insulin: Glargine, Detemir
Possible Evolution Pathways of an Insulin Treatment Program for Type 1 DM

Diagnosis of type 1 diabetes

Full-day “conventional” coverage
- BID premixed insulin
- Custom-designed “split-mix” variant

Full physiologic insulin coverage
- Bedtime long-acting analog plus
- Premeal rapid-acting insulin
Possible Evolution Pathways of an Insulin Treatment Program for Type 2 DM

- **PM insulin treatment for basal coverage**

- **Full-day “conventional” coverage**
 - BID premixed insulin
 - Custom-designed “split-mix” variant

- **Full physiologic insulin coverage**
 - Bedtime long-acting analog plus
 - Premeal rapid-acting insulin
Basal Insulin in Type 2 DM

- May continue antidiabetes medications at same dose, particularly those that reduce insulin resistance

- Add single evening insulin dose (10 U or 0.1 U/kg) at bedtime

- Adjust dose according to fasting glucose and monitor glycemic patterns throughout the day, particularly with basal insulin use
Basal Insulin in Type 2 DM (cont.)

- Adjust basal insulin based on premeal values, but watch potential for hypoglycemia at key times during the day/night

- Postmeal elevations (BG >160 mg/dL) suggest the need for premeal coverage. Options:
 - Change to a premixed or fix-mixture insulin program
 - Add premeal rapid-acting insulin to basal insulin program

- Consider stopping secretagogues with use of premeal insulin
“Split-Mix” / Premixed Insulin Therapy

Advantages
- Relatively easy to use
- Covers insulin requirements through most of day

Disadvantages
- Not an accurate replication of physiological patterns
- Greater likelihood of nocturnal hypoglycemia from peak of presupper NPH*
- Greater chance of fasting hyperglycemia as presupper NPH wears off*

*Possible solution for these problems is to split the second dose, giving rapid-acting insulin at suppertime and NPH at bedtime using custom-mixed insulins.
Considerations for Premixed Insulin Analogs

- Provide rapid- and intermediate-acting insulin in one injection without the need to mix insulins
- Can be used in a pen device for ease of use
- Ability to improve physiologic coverage pattern from a starting regimen of 1 injection of premixed insulin to 2 or 3 injections with same insulin
- Require a relatively consistent meal and exercise pattern because the ratio of rapid to intermediate insulin is fixed
- Realistic A1C goal of ≤8%
Insulin Therapy: Indications for “Basal-Bolus” Treatment

- Significant insulinopenia
- Instability of glucose patterns (usually the result of significant insulinopenia)
- Difficulty with hypoglycemia
- Lifestyle needs
- Achieving therapeutic goals
- Weight loss
Multiple Injection Program: Premeal Rapid-Acting Insulin and Basal Insulin

- Rapid-Acting Insulin
- Peakless/Basal Insulin

Meals: B (Breakfast), L (Lunch), S (Snack), HS (Dinner), B (Breakfast)
Sample Insulin Adjustment Algorithm: Premeal Rapid-Acting and Bedtime Basal Insulin

<table>
<thead>
<tr>
<th>BLOOD GLUCOSE</th>
<th>BREAKFAST</th>
<th>LUNCH</th>
<th>SUPPER</th>
<th>BED</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 70*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>71 – 100</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>101 – 150</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>151 – 200</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>201 – 250</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>251 – 300</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>301 – 400</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>OVER 400</td>
<td>9</td>
<td>12</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>0 – 70*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>20</td>
</tr>
</tbody>
</table>

Basal Insulin

Treat with food first, retest, then use algorithmic dose.
Carbohydrate Counting

- Carbohydrate is the food component that most affects blood glucose
- This system tracks the grams of carbohydrate consumed for the purpose of adjusting insulin doses
- The more carbohydrate consumed, the more insulin taken
- Particularly useful for people treated with variable premeal doses of rapid-acting insulin
- Requires pre- and postprandial glucose checks
Factors Influencing Therapeutic Choices

- Medical needs and treatment goals
 - A1C level and distance from target
 - Postprandial glycemia

- Safety

- Need for flexibility in treatment program

- Patient issues with respect to insulin use
 - Intellect and judgment
 - Psychosocial and cultural considerations
 - Physical capabilities and limitations
 - Other medical conditions and issues relating to use of other noninsulin medications
External Insulin Pump Using Rapid-Acting Insulin

Insulin Bolus Doses

Insulin Basal

Alternate Basals

B L S Snack HS B

Meals

Insulin Effect
Continuous Glucose Monitoring Provides a More Comprehensive Picture of the Patterns

Fingerstick Blood Glucoses (type 1)

- Glucose measurement
- Insulin bolus

Target Range

Fingerstick Blood Glucose Data

- Time: 12:00 am, 6:00 am, 12:00, 6:00 pm, 12:00 am
- Glucose levels: 400, 300, 200, 100, 0
Suggested Sequence for Assessment of Glycemic Patterns

- Fasting value
- General premeal and bedtime values and trends throughout the day
- Postprandial values – absolute levels
- Relative change, pre- to postprandial glycemic levels

Also, continually monitor nocturnal glycemia
Antidiabetes Medications → “Split Mix”
Insulin Regimen 4 Months Ago; A1C Now 6.9%; Good Control?:

<table>
<thead>
<tr>
<th></th>
<th>Fasting</th>
<th>Post-breakfast</th>
<th>Pre-lunch</th>
<th>Post-lunch</th>
<th>Pre-supper</th>
<th>Post-supper</th>
<th>Bedtime</th>
<th>2–3 AM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>205</td>
<td>97</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td>140</td>
<td>60</td>
</tr>
<tr>
<td>Tues</td>
<td>165</td>
<td>130</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Wed</td>
<td>200</td>
<td>115</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td>143</td>
<td>52</td>
</tr>
<tr>
<td>Thur</td>
<td>190</td>
<td>20</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Fri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Stepwise Perspective on Insulin Treatment

- Ability to identify people for whom insulin is indicated and discuss this need with them
- Capability or identified referral resources to oversee insulin treatment initiation and support
- Ability to teach insulin use:
 - Techniques
 - Knowledge and Skills for self-management
 - Spectrum of programs, from basal to pumps
- Ability to identify people for whom the current program is inadequate and advancement of therapy is indicated
- Troubleshooting
- Referral management
Take-Away Messages

- Insulin is highly effective but can pose a challenge for both patients and physicians.
- Basal-bolus regimens require more injections but provide better insulin coverage and glycemic control.
- Regimens and dosing must be adjusted for each patient.
- Monitoring of glycemic patterns is a key tool to guide therapeutic decisions.

For more information and education, log on to the Joslin Professional Education Continuum (JPEC) website: www.jpec.joslin.org