Laurie J. Goodyear Ph.D., Senior Investigator and co-Head of the Section on Integrative Physiology and Metabolism at the Joslin Diabetes Center, and Associate Professor of Medicine at Harvard Medical School, has received one of the first awards for the Molecular Transducers of Physical Activity in Humans Consortium (MoTrPac) set up by the National Institutes of Health (NIH) to develop a comprehensive map of the molecular changes that occur in the body in response to physical activity. 

“We know that exercise is probably the most important preventive “medicine” there is.  Exercise benefits overall health, particularly for people with chronic diseases, like diabetes,” Dr. Goodyear points out.  “But we don’t fully understand how those health benefits arise. If we can determine the changes that occur in the body during exercise on a molecular level, we could develop individually targeted exercise recommendations and also help people who are not able to exercise due to mobility issues.”

According to a statement from the NIH, nineteen MoTrPac grants will support researchers across the country to collect samples for analysis from people of different races, ethnic groups, sex, ages, and fitness levels. Because exercise affects organs and tissues that are difficult or dangerous to sample in living patients (such as the brain, lungs and kidneys) the consortium will include animal models to provide data on changes in these tissues.  

Dr. Goodyear’s lab at Joslin, which  is devoted to discovering the underlying molecular mechanisms by which exercise improves overall health, with particular emphasis on metabolic health, will study animal models in parallel with the clinical trials.  Dr. Sarah Lessard, Assistant Investigator in the Section on Clinical, Behavioral & Outcomes Research at Joslin and Instructor of Medicine at Harvard Medical School will be a co-Investigator on the project with Dr. Goodyear.

According to George King, M.D., Director of Research at Joslin, “We expect the MoTrPac study to provide valuable insights into ways in which clinicians and researchers can harness these molecular changes to benefit patients and help to treat many disease such as type 1 and 2 diabetes.”

 

Related Articles

A Scientist working in lab
Type 1
Kidney Disease
Research Highlights

The Preventing Early Renal Loss in Diabetes (PERL) Study Conclusion

The Preventing Early Renal Loss in Diabetes (PERL) Study Conclusion

Three-year clinical trial finds reducing uric acid levels in type 1 diabetes provides no beneficial impact on the progression of diabetic kidney disease BOSTON – (November 8, 2019) – Diabetic kidney...
Read more on The Preventing Early Renal Loss in Diabetes (PERL) Study Conclusion
National Diabetes Month
Type 1
Type 2

National Diabetes Awareness Month

National Diabetes Awareness Month

Diabetes is growing at an epidemic rate in the United States and across the globe. According to the Centers for Disease Control and Prevention (CDC), over 30 million Americans have diabetes and 1.5...
Read more on National Diabetes Awareness Month
Red blood cell traveling in an artery
Type 1
Heart Disease
Research Highlights

Research may show way to minimize complications after heart treatment

Research may show way to minimize complications after heart treatment

BOSTON – (October 1, 2019) – People with diabetes are much more likely to develop heart disease than those without the condition. They also are several times more likely to develop complications after...
Read more on Research may show way to minimize complications after heart treatment