Treating Hypertension in the Context of Cardiometabolic Risk

Mark E. Williams, MD, FACP, FASN
Associate Professor of Medicine, Harvard Medical School
Co-Director of Dialysis, Beth Israel Deaconess Medical Center
Senior Staff Physician, Joslin Diabetes Center
24 April 2013

Hypertensive Metabolic Cardiac Kidney Phenotype

ABCs of Diabetes Control
(Stark Casagrande DC 2/15/13)

HYPERTENSION
- Average systolic or diastolic blood pressure above 95th percentile for age and sex on at least three occasions
- Defined as >=140/90 in American adults
- About 28% of all North American adults have hypertension
- Higher prevalence in U.S. blacks (40%)
- With suggested targets of 130/80 in diabetes, hypertension is even more common

Hypertension Control
- Controlling high blood pressure has been a national priority in the U.S.
- Healthy People 2010 goal was met
- Hypertension control (<140/<90) improved from 27% in 1988-1994 to 50% in 2007-8
- USRDS: Improved hypertension in CKD population
- European Society for Hypertension Task Force: No compelling evidence of 130/80 mm Hg goal in diabetes
- ADA: Goals 140/80 in most cases
- JNC 8 due soon

Framingham Risk Assessment Calculator
- Hypertension
- Lipid abnormalities
 - Elevated total cholesterol
 - Elevated low density cholesterol
 - Low high-density cholesterol
- Diabetes mellitus
- Smoking
- Family history of premature coronary artery disease
 - First-degree male relative with event before age 55
 - First-degree female relative with event before age 65
- Age (men >=45, women >=55)
- Male gender

Copyright © 2013 by Joslin Diabetes Center, Inc. All rights reserved. These materials may be used for personal use only. Any distribution or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Joslin Diabetes Center is prohibited.
Risk of CV Events According to Blood Pressure

<table>
<thead>
<tr>
<th>SBP, mmHg</th>
<th>HR (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office</td>
<td></td>
<td></td>
</tr>
<tr>
<td><120</td>
<td>1.0 (Ref)</td>
<td>.25</td>
</tr>
<tr>
<td>120-129</td>
<td>1.04 (0.98-1.07)</td>
<td>.05</td>
</tr>
<tr>
<td>130-139</td>
<td>1.06 (0.99-1.13)</td>
<td>.1</td>
</tr>
<tr>
<td>140-149</td>
<td>1.11 (1.04-1.18)</td>
<td>.01</td>
</tr>
<tr>
<td>>150</td>
<td>1.14 (1.06-1.23)</td>
<td>.001</td>
</tr>
<tr>
<td>Diastolic</td>
<td></td>
<td></td>
</tr>
<tr>
<td><80</td>
<td>1.0 (Ref)</td>
<td>.69</td>
</tr>
<tr>
<td>80-89</td>
<td>1.10 (0.89-1.37)</td>
<td>.98</td>
</tr>
<tr>
<td>90-99</td>
<td>1.23 (1.00-1.51)</td>
<td>.05</td>
</tr>
<tr>
<td>100-109</td>
<td>1.30 (1.02-1.65)</td>
<td>.03</td>
</tr>
<tr>
<td>>110</td>
<td>1.59 (1.24-2.04)</td>
<td>.001</td>
</tr>
</tbody>
</table>

Minutolo Arch Intern Med 2011; 171: 1090

Risk of CV Events and Renal Death According to Blood Pressure Success

Estimated Effects of Population-wide Shifts in Systolic BP Distributions on Mortality

Office Blood Pressure

- Considered to be the most accurate
- Usually only taken 1-3 times/year
- White Coat Hypertension may confound data
- Office BP machines are usually accurate but need to be calibrated on a routine basis.

Home Blood Pressure MonitoringPredicts Events Better than Office Measurements

- Detailed Recording
- Very Helpful for Diagnosing White Coat Hypertension
- Discover Unrecognized Hypertension
- Dippers versus Non-dippers

24 Hour Ambulatory Blood Pressure
Non-Dippers have Higher Mortality

Hypertension in Diabetes Mellitus
- Causality is multifactorial
- Type 1 diabetes:
 - Strongly associated with diabetic nephropathy
 - Genetic predisposition – increased red blood cell sodium-lithium countertransport activity – increased peripheral resistance
 - Insulin may suppress insulin release
- Type 2 diabetes:
 - Coexists with other cardiometabolic risk factors
 - Insulin resistance, hyperinsulinemia
 - Increased proximal tubule sodium resorption

Hypertension and Diabetes

TABLE 57.1. Metabolic Disorders Associated with Hypertension and Diabetes

<table>
<thead>
<tr>
<th>Central obesity</th>
<th>Microalbuminuria</th>
<th>Low HDL cholesterol levels</th>
<th>High triglyceride levels</th>
<th>High TC/HDL cholesterol ratio</th>
<th>Cigarette smoking</th>
<th>Hypertension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased BP</td>
</tr>
<tr>
<td>Increased aortic stiffness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increased aortic stiffness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HOT Diabetic Subgroup
Reduction in Cardiovascular Events

P=0.005

<table>
<thead>
<tr>
<th>Target diastolic BP (mmHg)</th>
<th>Achieved systolic BP (mmHg)</th>
<th>Achieved diastolic BP (mmHg)</th>
<th># of patients</th>
<th>Reduction in events*</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 90</td>
<td>137.7</td>
<td>59.2</td>
<td>501</td>
<td>0.01</td>
</tr>
<tr>
<td>≤ 85</td>
<td>141.4</td>
<td>63.3</td>
<td>501</td>
<td>0.01</td>
</tr>
<tr>
<td>≤ 80</td>
<td>139.7</td>
<td>81.1</td>
<td>501</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Mean of all blood pressures for all study patients in BP subgroups from 6 months of follow-up to end of study.

*Includes all myocardial infarction, all strokes, and all other cardiovascular deaths

ACCORD Blood Pressures

ACCORD Blood Pressure Outcomes - Improvement for Stroke Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Intensive Therapy (mmHg)</th>
<th>Standard Therapy (mmHg)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systolic</td>
<td>129.1</td>
<td>138.8</td>
<td>0.008</td>
</tr>
<tr>
<td>Diastolic</td>
<td>76.5</td>
<td>79.0</td>
<td>0.002</td>
</tr>
<tr>
<td>Total</td>
<td>86.9</td>
<td>91.3</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Copyright © 2013 by Joslin Diabetes Center, Inc. All rights reserved. These materials may be used for personal use only. Any distribution or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Joslin Diabetes Center is prohibited.
ACCORD Trial: No benefit of Tight BP Control on Cardiovascular Outcomes

![Graph showing comparison of primary outcomes](image)

New England Journal of Medicine 362:1575-1585; 2010

Intensive BP Control (systolic <130) did Not Improve Cardiovascular Outcomes

INVEST Study (Diabetes)

![Graph showing adjusted risk of all-cause mortality](image)

Cooper-DeHoff RM et al JAMA 304: 61-68 (2010)

Low Blood Pressures Appear to Increase Cardiovascular Mortality

![Graph showing adjusted risk of all-cause mortality](image)

Cooper-DeHoff RM et al JAMA 304: 61-68 (2010)

Mathematical Analysis Suggests that Systolic Blood Pressure <120 Does Not Improve Outcomes Except for Stroke

![Table showing analysis](image)

Prevalence of Hypertension in Diabetic Kidney Disease

![Table showing prevalence](image)
Prevalence of CKD in Framingham Risk for Developing Coronary Heart Disease

(Weiner Am J Med 2007; 120: 552)

CKD Stages and Treatable CVD Risk Factors*

<table>
<thead>
<tr>
<th>Stage</th>
<th>Percent of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
</tr>
</tbody>
</table>

*Smoking, BMI ≥ 30 kg/m², total cholesterol ≥ 240 mg/dL, systolic blood pressure ≥ 140 mm Hg or diastolic blood pressure ≥ 90 mm Hg, hemoglobin < 12 g/dL in females and < 13 g/dL in males, C-reactive protein ≥ 1 mg/dL, homocysteine > 11 µmol/L, and urinary albumin/creatinine ratio ≥ 30 mg/g.

Effect of Blood Pressure Control on CKD Progression

CV Events/Mortality and eGFR KDIGO

Microalbuminuria and Cardiovascular Death

(Cardiovascular Risk Factors in CKD

- CKD-specific factors
 - Vascular calcification
 - Hyperphosphatemia
 - Elevated Ccr
 - Phosphorus Product
 - Hypertension

- Traditional: modifiable
 - Smoking
 - Hypertension
 - Hyperglycemia
 - Hyperlipidemia

Copyright © 2013 by Joslin Diabetes Center, Inc. All rights reserved. These materials may be used for personal use only. Any distribution or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Joslin Diabetes Center is prohibited.
Joslin Diabetes Center
Primary Care Congress for Cardiometabolic Health 2013
Treating Hypertension in the Context of Cardiometabolic Risk

Physiology of CKD and CV Risk (white-traditional RF, shaded-nontraditional RF)

Guidelines Hypertension/CKD/DM

Blood Pressure Treatment

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Special considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diuretic</td>
<td>Edema common in diabetic nephropathy; thiazides not effective in renal insufficiency</td>
</tr>
<tr>
<td>Angiotensin-converting enzyme (ACE) inhibitor</td>
<td>Treatment of choice; reduce proteinuria and protect from progression; risk of hyperkalemia and worsening renal function; no adverse effects on glucose or lipid levels; avoid in renal failure</td>
</tr>
<tr>
<td>Angiotensin receptor blocker</td>
<td>Alternative to ACE inhibitor</td>
</tr>
<tr>
<td>Calcium-channel blocker</td>
<td>May use in combination with ACE inhibitor; variable effects on diabetic nephropathy</td>
</tr>
<tr>
<td>ß-Blocker</td>
<td>No long-term data on diabetic nephropathy; increased risk of diabetes; may mask warning signs of hypoglycemia</td>
</tr>
<tr>
<td>α-Blocker</td>
<td>Neutral effect on proteinuria; orthostatic hypotension; neutral on lipids and glucose intolerance; recent concern about congestive heart failure</td>
</tr>
</tbody>
</table>

Impact of Cardiovascular Disease on Antihypertensive Choices

Table 4: Special considerations in the selection of antihypertensive medications for Salt Intake and Hypertension

<table>
<thead>
<tr>
<th>Drug class</th>
<th>Special considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diuretic</td>
<td>Edema common in diabetic nephropathy; thiazides not effective in renal insufficiency</td>
</tr>
<tr>
<td>Angiotensin-converting enzyme (ACE) inhibitor</td>
<td>Treatment of choice; reduce proteinuria and protect from progression; risk of hyperkalemia and worsening renal function; no adverse effects on glucose or lipid levels; avoid in renal failure</td>
</tr>
<tr>
<td>Angiotensin receptor blocker</td>
<td>Alternative to ACE inhibitor</td>
</tr>
<tr>
<td>Calcium-channel blocker</td>
<td>May use in combination with ACE inhibitor; variable effects on diabetic nephropathy</td>
</tr>
<tr>
<td>ß-Blocker</td>
<td>No long-term data on diabetic nephropathy; increased risk of diabetes; may mask warning signs of hypoglycemia</td>
</tr>
<tr>
<td>α-Blocker</td>
<td>Neutral effect on proteinuria; orthostatic hypotension; neutral on lipids and glucose intolerance; recent concern about congestive heart failure</td>
</tr>
</tbody>
</table>

Salt Intake and Hypertension

Progress in Cardiovascular Diseases 52:363, 2010

Copyright © 2013 by Joslin Diabetes Center, Inc. All rights reserved. These materials may be used for personal use only. Any distribution or reuse of this presentation or any part of it in any form for other than personal use without the express written permission of Joslin Diabetes Center is prohibited.
Diet and Hypertension:
American Heart Association Recommendations

<table>
<thead>
<tr>
<th>Lifestyle Modification</th>
<th>Recommendation</th>
<th>Expected systolic BP reduction (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight loss</td>
<td>For overweight or obese persons, lose weight, ideally attaining a BMI <25 kg/m²; for non-overweight persons, maintain a BMI <25 kg/m².</td>
<td>5-10 mmHg per 1 kg weight lost</td>
</tr>
<tr>
<td>Reduced salt intake</td>
<td>Lower salt (sodium chloride) intake as much as possible, ideally to <65 mmol sodium (corresponding to <2.5 g of sodium or 5.6 g sodium chloride).</td>
<td>2-8 mmHg</td>
</tr>
<tr>
<td>DASH-type dietary pattern</td>
<td>Consume a diet rich in fruits and vegetables (8-10 servings/day), rich in low-fat dairy products (2-3 servings/day), and limited in saturated fat and cholesterol.</td>
<td>2-4 mmHg</td>
</tr>
<tr>
<td>Increased potassium intake</td>
<td>Increase potassium intake to 150 mmol (4.7 g), which is also provided in DASH-type dietary pattern.</td>
<td>2-4 mmHg</td>
</tr>
<tr>
<td>Limitation of alcohol intake</td>
<td>For those who drink alcohol, consume 2 alcoholic drinks/day (men) and 1 alcoholic drink/day (women).</td>
<td>2-4 mmHg</td>
</tr>
</tbody>
</table>

ACEI/ARB treatment on CKD Outcomes

- Hermida CD 2011;34: 1270
- Type 2 DM
- Prospective, randomized
- All meds in AM vs. some bedtime treatment

Time of BP Meds and Cardiovascular Risk

Recommendations

- AN INTEGRATED APPROACH
- Use Home Blood Pressure Monitoring
- Consider Patient Compliance
- Dosing Schedule
- Number of Medications
- Cost
- EDUCATION: Discuss pathophysiology with patients
- Exercise, weight loss, diet, smoking cessation, and salt restriction are paramount
- Select Medications Based on Comorbidities
 - Cardiovascular Disease
 - Beta Blockers
 - ACE Inhibitors
 - Aldosterone Antagonists
 - Kidney Disease
 - RAAS System inhibitors
 - Non-dihydropyridine Calcium Channel Blockers
Question 1: The risk of cardiovascular disease in increased significantly with:

- CKD
- Microalbuminuria
- Both
- Neither

Question 2: Cardiovascular risk factors in CKD include:

- Traditional risk factors
- CKD-specific risk factors
- Both
- Neither

Question 3. The blood pressure measurement that has been shown to best predict development of complications of hypertension is:

1. Home blood pressure
2. Office blood pressure
3. 24-hour blood pressure monitoring
4. Arterial line blood pressure measurement