Dr. Mary-Elizabeth Patti is a physician-scientist, serving as a Principal Investigator at Joslin Diabetes Center, Director of the Hypoglycemia Clinic, Co-Director of the Molecular Phenotyping Core, and Associate Professor of Medicine at Harvard Medical School.

Dr. Patti’s NIH-funded lab focuses on identification of molecular/epigenetic mechanisms by which nutritional exposures during early life increase diabetes risk in subsequent generations. Translational studies are focused on mechanisms contributing to diabetes resolution and hypoglycemia after bariatric surgery.

Dr. Patti received her MD from Jefferson Medical College magna cum laude, internal medicine residency at the University of Pittsburgh, and endocrinology fellowship at Harvard. She is board-certified in endocrinology and metabolism.

Dr. Patti has held numerous leadership roles in the diabetes scientific community, including service as organizer of a diabetes-focused Keystone Symposium and chair of the American Diabetes Association Scientific Sessions Planning Committee. She was elected to the American Society of Clinical Investigation in 2009 and to Fellowship in both the American College of Physicians and Obesity Society in 2014.

Type 2 diabetes is typically present for years before diagnosis, and individuals at risk for diabetes have insulin resistance and other metabolic abnormalities for years before that. The primary focus of the Patti Laboratory is to identify the molecular and metabolic pathways which are disrupted in individuals at risk for diabetes. We are particularly interested in mechanisms by which environmental or nutritional factors can mediate risk, potentially by altering transcriptional regulation and metabolism at a cellular level. By understanding these mechanisms, we are hopeful that we will be able to identify new approaches to diabetes prevention and treatment. To address these key questions, scientists in the Patti Lab utilize both cellular and animal models of diabetes risk, as well as tissue samples from human volunteers with insulin resistance or established type 2 diabetes. Current projects include analysis of metabolism and transcriptional regulation in (1)  iPS cells (skin-derived induced pluripotent stem cells) derived from patients with diabetes or insulin resistance, and (2) mouse models of diabetes risk created by disruption of candidate genes or in response to prenatal nutritional exposures. With these studies, we continue to identify and test new genes and pathways in the cell which are important for maintaining normal insulin response (insulin sensitivity) and blood glucose levels.   

Some of the recent findings include:

  • Insulin resistance and nutrition during early life can profoundly influence disease risk in adult life and may also impact on health of subsequent generations. We recently demonstrated (Science 2014) that prenatal nutritional exposures of a pregnant mouse confer diabetes risk not only in offspring, but also in grandoffspring mice, potentially by altering germ cell epigenetic regulation of transcription. Current studies aim to understand whether epigenetic signals can be modified during postnatal life and to determine the mechanisms by which these signals can affect early-life development.
  • Insulin resistance and nutrition during early life can affect the metabolic function of stem cells - cells which are critical for normal development. We are analyzing how diabetes risk affects metabolism, transcriptional regulation, and differentiation programs in iPS and other stem cell populations. 

We are hopeful that understanding how transcriptional, epigenetic, and metabolic regulation is altered prior to the onset of diabetes will provide us the opportunity to identify new methods to reduce diabetes risk and also to reduce risk for subsequent generations.

In Dr. Patti's role as an endocrinologist and director of the hypoglycemia clinic at Joslin, she cares for patients with severe hypoglycemia, a condition which sometimes occurs after bariatric or other forms of gastrointestinal surgery. Given the severity of this condition, she is working to identify mechanisms responsible for hypoglycemia and reductions in glucose levels after bariatric surgery, and is investigating new therapies to reduce its frequency and severity.

Pennsylvania State University

Medical School
Jefferson Medical College

University of Pittsburgh

Harvard-Longwood Area Combined Fellowship in Endocrinology

Board Certification
Internal Medicine, Endocrinology

  • Adult

Nominated for Harvard Medical School Mentorship Award recipient of grants from NIH, Chan-Zuckerberg Initiative

Contact Information

Office Phone

(617) 309-2665

maryelizabeth.patti [at] joslin.harvard.edu

News Related to Mary-Elizabeth Patti

How Stomach Surgery Makes the Cut for Diabetes

Studying molecular factors that mediate bariatric surgery’s beneficial effect on type 2 diabetes, Joslin investigators identify one that could be targeted therapeutically without surgery. More than a...
Read more on How Stomach Surgery Makes the Cut for Diabetes

Why people with diabetes are being hit so hard by Covid-19

“I’m always happy when patients say, yes, I’m not going out, I’m wearing a mask, I’m doing as much as I can. But it makes it harder for people to meet their fitness goal, which is such a critical...
Read more on Why people with diabetes are being hit so hard by Covid-19

New Closed-Loop System Offers Promise as Novel Treatment for Post-Bariatric Hypoglycemia

The algorithm-controlled system senses impending lows and delivers small doses of liquid glucagon to raise blood sugar to safe levels­­. BOSTON - (January 9, 2020) - Gastric bypass vastly improves the...
Read more on New Closed-Loop System Offers Promise as Novel Treatment for Post-Bariatric Hypoglycemia